

ENKA HIGH SCHOOL SCIENCE DEPARTMENT 12TH GRADES PHYSICS

Experiment Name: Radioactive decay law

Aim: To draw radioactivity graph

Theory:

A nucleus of a radioactive element that emits an a-particle must transform into a nucleus of another element. The nucleus of the so-called 'parent' element loses two neutrons and two protons. Therefore the nucleon number (A) changes by 4 and the proton number (Z) changes by 2. The nucleus formed by this decay is called the 'daughter nucleus'. We may express such a nuclear decay by the nuclear reaction equation

The radioactive decay law enables us to determine a relation between the half-life of a radioactive element and the decay constant.

If a sample of a radioactive element initially contains N_0 atoms, after an interval of one half-life the sample will contain N atoms. If the half-life of the element is $T\prime_2$ from the decay law, we can write that

$$N = N_0 e^{-\lambda t}$$

Procedure:

1. Go to http://phet.colorado.edu/en/simulation/alpha-decay, and click on the "Run Now!" button. The below window should appear.

🕌 Alpha Decay (3.2	27)					
File Help	ns Single Atom					, Citi Mila
# 1	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Half Life		3+	egend Neutron Proton Alpha Particle thoose Nucleus
				Reset All Nucl	ei	O Polonium-211
						⊙ 🚱 Custom
				S. Carlo Carlo	_	Custom (Decayed) Reset All
				Bucket o'		
			Þ	Add IU		
🦺 Başlat 🔰	😂 UNIT 3 ELECTRICTY	Experiment Alpha d	Experiment Capacit	. 🚺 Alpha Decay - Alpha	🛃 Alpha Decay	(3.27) 🔹 🔊 🛜 💈 🥥 23:48

2. Click to "Custom" from the column on the right of the screen and get the below diagram.

- 3. Adjust the half life to any value you want between 0.5-1sec. using double-sided green arrow.
- 4. Add atoms to the bucket by clicking "Add 10" icon below the bucket at the bottom ad get the

5. By clicking ">" button, get how many undecayed atom remains in each time interval of 0.5s.

Repeat your measurement 10 times, write your data to the below table and calculate the average.

Time (s)	0	0.5	1.0	1.5	2.0	2.5	3.0
Number of undecayed atom,N	99						
	99						
	99						
	99						
	99						
	99						
	99						
	99						
	99						
	99						
Average	99						

6. Draw number of undecayed atom vs time graph.

7. Calculate values of In N (average) and write them in the table below.

Time (s)	0	0.5	1.0	1.5	2.0	2.5	3.0
Number of undecayed atom, N	99						
ln N							

8. Draw ln N vs time graph and calculate its slope which is known as decay constant, λ .

$$\lambda = \frac{\ln N}{T_{1/2}}$$

9. Using the below relation, calculate half life of parent nucleus.

$$T_{1/2} = \frac{\ln N}{\lambda}$$